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ABSTRACT
Deep neural networks (DNNs) are widely used in various appli-
cations. The accurate and latency feedback is essential for model
design and deployment. In this work, we attempt to alleviate the
cost of model latency acquisition from two aspects: latency query
and latency prediction. To ease the difficulty of acquiring model
latency on multi-platform, our latency query system can automati-
cally convert DNNmodel into the corresponding executable format,
and measure latency on the target hardware. Powered by this, la-
tency queries can be fulfilled with a simple interface calling. For
the efficient utilization of previous latency knowledge, we employ
a MySQL database to store numerous models and the correspond-
ing latencies. In our system, the efficiency of latency query can
be boosted by 1.8×. For latency prediction, we first represent neu-
ral networks with the unified GNN-based graph embedding. With
the help of the evolving database, our model-based latency predic-
tor achieves better performance, which realizes 12.31% accuracy
improvement compared with existing methods. Our codes are open-
sourced at https://github.com/ModelTC/NNLQP.
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1 INTRODUCTION
Deep neural networks (DNNs) have entered the era of large-scale
deployment and application in various tasks, such as computer
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vision [12, 24, 31] and natural language processing tasks [5]. In
practical industry production, the accuracy and efficiency of a DNN
model are especially paid attention to. In recent years, numerous
algorithm researchers and hardware designers have been devoted
to improving the model efficiency while maintaining the model
accuracy utilizing techniques like model compression [8, 20, 21, 29,
40, 43], neural network search [2, 34, 35], and special acceleration
unit development [22, 25, 26]. Many of them focus on reducing the
computation amount (FLOPS), params, or memory access of the
model [23, 33]. However, these metrics are not good proxies for the
latency feedback [7] since some hardware has unique designs (e.g.,
Tensorcore in Nvidia Turing GPU [6] and KB-level memory storage
in STM MCU [23]). Therefore, only considering FLOPS, params,
and memory access are not enough and an accurate and timely
latency feedback is essential for model design and deployment.
Considering hardware latency in DNN design can make better
use of hardware features and greatly accelerate inference speed or
improve accuracy, as proved by existing work [3, 23]. Currently,
the mainstream latency acquiring methods could be classified into
two categories: true latency evaluation on the target hardware or
latency prediction with a meticulously designed predictor.

Collecting latency performance is difficult and limited by hard-
ware availability. Besides, deploying massive neural networks from
various hardware devices can also be expensive. Usually, deploying
deep models onto multiple devices with different inference frame-
works requires hardware expertise and many engineering efforts,
which hinders the efficient latency acquisition. Moreover, the la-
tency information acquired by such a complicated pipeline lacks
persistent storage and thus cannot be reused effectively for a future
query of the same network. Recently, some works propose latency
benchmark and dataset which mainly focus on the NAS-Bench101
or NAS-Bench201 models within a relatively small search space
such as HW-NAS Benchmark [19], BRP-NAS [7]. However, the
datasets are static and no longer satisfy the practical need with the
growing number of deployments.

For large-scale latency acquisition tasks such as Network Archi-
tecture Search (NAS) [2, 3, 35], it would be also unacceptable to
acquire the latency of millions of models from the hardware. There-
fore, latency prediction methods [3, 4, 7, 15, 16, 41] are proposed to
collect latency with a relatively low cost within an acceptable error
bound. There are two main challenges brought up with latency
prediction: (1) Existing works (e.g., TPU-Performance [15, 16] and
nn-Meter[41]) divide a whole model inference into multiple kernels
which relies on the hypothesis that the latency of kernels can be
summed up as the model latency. However, the hypothesis might
be invalid due to hardware graph fusion and launch cost for each
kernel and cause a gap that results in a large difference between the
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Figure 1: Overview of our multi-platform neural network latency query and prediction system (NNLQP). Bold colored arrows
indicate the query/prediction procedure. Thin black arrows denote the scheme to obtain accurate and reusable latency predic-
tors.

true latency and predicted latency (Figure 2). (2) Some recent works
propose to predict model latency directly [7], but employ a simpli-
fied representation for the model in a specific search space [3, 7].
Thus some network topology information is missing and the rep-
resentation method fails to fit another search space. Without a
unified representation of neural networks, the large-scale latency
information cannot be efficiently utilized to alleviate the problem
of huge sampling space, thus resulting in poor prediction results.

To alleviate the aforementioned problems of latency acquisition
and prediction, we propose a multi-platform neural network latency
query and prediction system (NNLQP) with an evolving database,
which is composed of the neural network latency query system
(NNLQ) and the neural network latency prediction system (NNLP).

NNLQ takes the universal model format ONNX [1] as input, and
automatically transforms ONNX into the corresponding executable
format for supported hardware platforms. Then the latency evalu-
ation task can be launched by a simple interface calling remotely
without manually accessing the real-world device. To further uti-
lize the plentiful history latency knowledge, we employ a MySQL
database to store models and their latencies. A hash-based model en-
coding scheme is devised to realize efficient retrieval. If the latency
of the current model is already stored in the database, NNLQ would
return the hit record directly, which can significantly accelerate the
latency acquisition process.

Benefiting from NNLQ, the latency knowledge of various models
on various platforms is continuously accumulated in the database.
With all latency data in our database, we can design and train a
latency predictor with high accuracy and keep improving it for
new model structures and platforms with the evolving database.
NNLP can extract unified graph embeddings for deep neural net-
works, and predict model latency of multiple hardware platforms
simultaneously.

To summarize, the contributions of our paper are three-fold:

• NNLQP provides a model latency query and prediction sys-
tem, which can give the latency feedback of neural networks
on various hardware with a unified and efficient interface.

• The proposed predictor utilizes the plentiful and evolving
data stored in the database of NNLQP and devises a unified
graph embedding to avoid the inaccurate sum up of kernel
latencies, improving the prediction accuracy by 12.31%.

• Equipped with the system, the overall efficiency of latency
acquisition can be boosted by 1.8× and the accuracy gain for
upstream NAS application can be at most 1.2% with much
more accurate latency feedback.

2 RELATEDWORK
Latency Benchmark and Dataset. TenSet [42] has been proposed

to improve the performance of cost model for deep learning compil-
ers such as TVM [4]. Recent works propose hardware benchmarks
for the latency of the whole network such as BRP-NAS [7] and
HW-NAS-Bench [19]. However, these datasets are static and hard
to query and extend with the growing number of deployments.

Representation of Neural Networks. The representation of neural
networks is important in latency prediction. Existing works usually
embed differentmodels into simple feature tensor. ProxylessNAS [3]
encodes operation index for each node. BRP-NAS [7] only encodes
the operation index and connections inside search cells (basic units
in the NAS). OFA [2] encodes the choice of kernel size, depth,
expand ratio, and resolution as a 128-dimension vector. All these
NAS methods can only represent models inside their own search
space. TPU-Performance [15, 16] and nn-Meter [41] divide the
whole graph into different kernels and encode kernel features. The
description in the model level is lacking and the representation
cannot be generalized onto other architectures or search spaces,
which would cause some network topology information go missing
and further impact prediction results.
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Latency Prediction Tool. Recent works realize the problem that
getting hardware latency is highly expensive, especially for ex-
tensive models. Therefore, several works have been proposed to
estimate latency at a low cost. FLOPs-based: the number of FLOPs
or memory access (MAC) is usually used as a proxy for the actual
latency on hardware devices, while these two metrics sometimes
have a relatively low correlation with latency as explained in [7, 28].
Lookup table-based: Therefore, most NASmethods [3] use a look-
up table to indicate the final latency of different models. Although
it is highly efficient, it also has a large difference from the exact
latency on target devices. Learning-based methods: Learning-
based methods are becomingmore popular, deep learning compilers
like TVM [4] employs a performance model for an auto-tuner to
evaluate candidate configurations in a search space. BRP-NAS [7]
encodes the basic units in the NAS to represent the whole network
which can not handle general cases for the model with different
channels or depth settings.

3 BACKGROUND AND MOTIVATION
In this section, we summarize the obstacles for these two latency
acquiring methods: true latency evaluation on the target hardware
or latency prediction with a meticulously designed predictor.

3.1 Obstacles for Acquiring Model Latency
Multi-platformmodel latency query requires a complicated pipeline.

With the increasing application scenarios, more and more DNN
models need to be deployed on multiple platforms. It brings up
new problems of obtaining the exact latency of multiple platforms
quickly. Collecting the latency of DNN models from various hard-
ware devices is a tedious process. First, the runtime environment of
the hardware should be configured carefully. For example, suited
versions of CUDA and TensorRT should be installed for a GPU ma-
chine with a specific driver. Then DNNmodels are transformed and
compiled to the corresponding machine codes, which could cost a
lot of time. Finally, machine codes of DNN models are evaluated on
hardware devices. For multi-platform latency measurement, many
engineering efforts are required, since inference libraries of different
devices differ greatly. Moreover, limited by hardware availability,
the exact latency feedback is even infeasible.

Themodel latency information lacks unified storage for later queries.
Since the existing literature only collects latency data for a spe-
cific target, i.e., training and evaluating the predictor, they usually
choose a simplified data format that neglects some information like
the topology. This practice works for a small range of similar neu-
ral networks but will fail when facing neural networks out of the
pre-defined scope. When the amount of neural networks increases,
which is a common case in the upstream tasks (NAS), the dispersed
and non-standard datasets can not be effectively reused, leading to
a low query efficiency and obvious resource waste.

3.2 Limitations of Existing Latency Predictors
Recent prediction works rely on kernel additivity assumptions.

They assume that kernels run sequentially and the model latency
is equal to the sum of all its kernel latencies. However, this assump-
tion is not always correct for some hardware platforms: (1) Some
artificial intelligence chips have multi-stream mechanisms, and

(a) Small latency range (b) Large latency range

Figure 2: Kernel additivity validation. Points with different
colors are all above the red line y = x . It indicates that the
sum of the kernel latencies is greater than model latency.

they could run multi-kernels parallelly; (2) Each kernel has its input
and output tensors. For neighbor kernels, the memory access cost
of input and output tensors may be overlapped while measuring
latency; (3) Kernels are detected based on operator fusion rules
only, but other graph optimizations may determine new kernels,
such as operator rearrangement. Incomplete kernels may cause
prediction bias. From Figure 2, we can conclude that the naive addi-
tion of kernel latencies can not effectively represent model latency
(More discussions in Appendix A). Therefore, model-level latency
prediction can be a better solution.

Model-based predictors rely on large-scale latency information.
As aforementioned, acquiring large-scale latency information in a
short time is non-trivial. Thus improving the prediction accuracy
with a few data records become crucial. Recently some works [32]
use FLOPS regression as an upstream pre-training task for efficient
few-shot latency prediction. However, this task is easy to overfit
and thus discounts the effect of transferring to latency prediction.
What’s more, even if we have accumulated enough latency data
of different types of neural networks, the lack of general graph
representation hinders current methods from taking advantage of
all of them (illustrated in Section 2).

4 SYSTEM OVERVIEW
To overcome the aforementioned problems, we propose a neural
network latency query and prediction system (NNLQP) with an
evolving database, which is composed of the neural network latency
query system (NNLQ) and the neural network latency prediction
system (NNLP) as shown in Figure 1. NNLQ supports automatic
model deployment and latency measurement for various platforms,
and realizes permanent storage of model and latency with a MySQL
database. NNLQ can also retrieve models and latency fast by a hash-
based model encoding. Based on accumulated true latency records
in our database, we train NNLP to predict latency fast. NNLP uses a
GNN-based backbone to extract unified graph embeddings for DNN
models, and attaches multi-heads to predict latency for multiple
platforms simultaneously. Benefiting from the shared backbone
and transfer learning, NNLP can effectively improve the latency
prediction accuracy of unseen structures and unseen platforms.
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Table 1: Supported platforms in our NNLQ.

Type Hardware Software Data Type
GPU T4/P4 trt5.0/trt7.1 fp32/fp16/int8
CPU cpu openppl fp32
ASIC hi3559A nnie11 int16/int8
ASIC hi3519A nnie12 int16/int8
ASIC atlas300 acl fp16/int8
ASIC mlu270 neuware int16/int8
ASIC rv1109 rknn int16/int8

5 NEURAL NETWORK LATENCY QUERY
To ease the difficulty of model latency acquisition on multiple plat-
forms and utilize large-scale latency information efficiently, we
propose a neural network latency query system NNLQ. We in-
troduce NNLQ from two aspects: multi-platform model latency
acquisition, and model storage and latency query.

5.1 Multi-Platform Model Latency Acquisition
The proposed NNLQ can perform automatic model deployment and
latency measurement on multiple platforms. Users provide ONNX
models and target platforms as query input, and NNLQ returns the
true latency on the target hardware through the following steps:

Step 1: model transformation. ONNX models are automatically
converted into the corresponding graph descriptions that are suited
for the inference library of the target platform, such as INetworkDef-
inition in the TensorRT toolkit. Then the inference toolkit is used
to compile switched models into executable codes and pack all
dependent libraries.

Step 2: device acquisition. The system manages various hardware
devices through the remote procedure call (RPC) interface, and if
there are idle devices for the target platform, the system acquires the
control right of the device. We support many devices with different
types as shown in Table 1 which covers a wide range of CPU, GPU,
and ASIC devices. For details of platforms, please see Appendix B.

Step 3: latency measurement. The system uploads the executable
code and its dependent libraries to the target hardware and runs
the model to get latency. The exact execution time will be returned
if successful or error messages will be returned if failed. After the
latency measurement is completed, the control right of the device
is released. The latency measurement system runs on the server,
which can work continuously and improve the utilization of devices.

5.2 Model Storage and Latency Query
Our NNLQ employs MySQL as a storage database to provide unified
storage of DNN models and their latencies. To achieve fast retrieval
of DNN models, we propose a graph hash encoding method, which
encodes the model into a unique hash representation based on the
model structure and operator attribute information.

The graph hash encoding: The deep neural network can be re-
garded as a directed acyclic graph (DAG) of operator nodes: G =
(V, E), where V is the set of nodes and E is the set of edges. First,
the hash encoding Hv of node v ∈ V is defined as follows:

Hv = fhash (fsor t (Av ) ⊕ fsor t ({Hu |u ∈ Suc(v)})) (1)

where Av denotes the set of node attributes, Suc(v) denotes the
successor nodes of node v , fsor t is the sort function, fhash is the
hash encoding function, and ⊕ is the Concat function. The node
hash encoding is determined by its attribute values and the hash
encodings of all its successor nodes. So we can obtain a unique hash
encoding of the node v . We calculate the node hash encodings in
reverse topological order. It is guaranteed that for each node, its
encoding is computed after all its successors. Then we define the
hash encoding of the whole network:

HG = fhash (fsor t ({Hu |Pre(u) = ∅})) (2)

of which, Pre(u) represents the predecessor node set of node u, and
Pre(u) = ∅ represents that node u does not have any predecessor
node, and it is the node connected with input. So we can get the
unique hash encoding of the DNN model HG . The graph hash
computation is shown as the left part of Figure 3. For models like
recurrent neural networks (RNNs) with cycles, the loop will finally
be unfolded. So they are still DAGs and can be encoded by our
hashing method. The encoding value characterizes the network
topology and node attributes. The same node hash encoding means
that the sub-graphs composed of its successor nodes are the same.
By comparing hash encodings, we can quickly distinguish whether
two models contain the same network structure and node attributes.

Model-based database: Our MySQL database can store latency
records of various DNN models for multiple platforms. The Entity-
Relationship (ER) diagram is shown as Figure 4. We define a model
table to store DNN models (ONNX format without weights), and
save the graph hash encoding to realize the fast retrieval. Regardless
of large networks or small ones, the graph hash key is always stored
with 8 bytes. Each model record uses the storage of hundreds of
bytes. In the platform table, hardware name, software name, and
data type are stored. Each platform record is stored with 152 bytes.
Besides, we defined a latency table to store latency information
including cost, batch size, and memory access. The latency table
adopts model id and platform id as its foreign keys. We also store
the host/device memory for future analysis. Each latency record is
stored with 52 bytes. As the latency query task grows, the database
can continuously accumulate model latency knowledge.

Latency query: NNLQ provides a caching mechanism for neural
network latency. When users query a latency, the system will re-
spond quickly if the record hits inside the database, otherwise, the
system will launch the latency measurement on hardware. There-
fore, NNLQ can make good use of history latency knowledge and
provide users with a query-able latency database.

6 NEURAL NETWORK LATENCY
PREDICTION

Benefiting from the NNLQ system, we can continuously accumulate
latency knowledge of various models on various platforms. With
all these stored latency data, we can design and train a latency
predictor within reasonable error bounds.

6.1 Unified Graph Embedding
To predict model latency accurately, it is important to extract fea-
tures of the neural network. We propose a unified graph embedding
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Figure 4: The Entity-Relationship diagram of the database
in NNLQ. PK is primary key and FK is the foreign key.

that can be the used as the representation of operators, kernels, and
neural networks. Themethod takes the ONNXmodelG = (V, E) as
input, then extracts node features, computes GNN-based node em-
beddings, and gets the unified graph embedding. The computation
step is shown as the right part of the Figure 3.

Node features. We first extract node features, and the node fea-
ture of v ∈ V is defined as follows:

F 0v = Fcodev ⊕ Fattrv ⊕ F
shape
v (3)

where Fcodev is the one-hot vector indicating the node operator
type, Fattrv is the node attribute vector including the kernel size,
stride, and other fields, F shapev is the output shape encoding, and ⊕

is the vector concatenation operation. Node features cover factors
that affect the operator latency. For example, different types of
operators, different attribute values, and different sizes of feature
maps lead to different latencies. In practice, we calculate Fattrv ,
F
shape
v by applying the mean and variance for normalization.

GNN-based node embeddings. Then we extract node embeddings
with the graph neural network (GNN). GNN integrates the features
of neighbor nodes by an aggregation algorithm and several GNN
layers. We use an inductive method GraphSAGE [11] that can gen-
erate efficient node embeddings for unseen data. With d SAGEConv

layers, the node embedding of the i-th layer is defined as follows:

F iv = L2(W
i
1 · F i−1v +W i

2 ·
∑

u ∈N(v)

F i−1u ) (4)

where W i
1 ,W

i
2 denote two parameters of the i-th feed forward

function, · denotes the matrix multiplication, L2 denotes the l2-
normalized function, N(v) denotes the neighbor node set of node
v , and

∑
denotes the mean aggregation method. When i = 0, F iv is

the node feature defined as Equation 3.

The graph embedding. Finally, we can define the unified graph
embedding of G:

FG = F static
G

⊕
∑
v ∈V

Fdv (5)

where F static
G

is the overall static feature that is determined by
the original model and contains four values: batch size, FLOPs,
parameters, and memory access,

∑
is the accumulation function,

which reduces node embeddings and obtains the graph feature with
a uniform length. By concatenating the static feature and the graph
feature, we can get a unified graph embedding of a DNN model.

6.2 The Multi-Platform Predictor and Transfer
Learning

With large-scale latency information stored in the database, we
can train latency predictors. The proposed predictor NNLP uses
the shared GNN backbone to extract the graph embedding and
attaches multi-heads to predict latency for multiple platforms. So it
is convenient to train the predictor with single-platform training,
multi-platform training, and transfer learning.

Single-platform training. We can define a dataset {(Gi ,yi , P)},
where yi denotes the latency ground truth on platform P of model
Gi . Given model G, the unified graph embedding FG is extracted
by the GNN-based encoder f (G;α), where α is the parameter to
be learned. The prediction head д(FG ; β) predicts the latency on
platform P , where β is the parameter to be learned. As shown in
Figure 3, the prediction head is composed of Fully Connected (FC)
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Algorithm 1: Training multi-platform latency predictors
Input: platforms {P1, P2, ..., Pm }; training dataset

S = {(G1,y1,p1), ..., (Gi ,yi ,pi ), ..., (Gn ,yn ,pn )}
Output: α , βP1 , βP2 , ..., βPm
for Gi ,yi ,pi ∈ S do

Extract the graph embedding: FGi = f (Gi ;α);
Predict latency on platform pi : y′i = д(FGi ; βpi );
Compute loss: Li = (yi − y′i )

2;
Update д(; βpi ) by gradient ∂Li

∂βpi
;

Update f (;α) by gradient ∂Li
∂α .

𝒢
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Figure 5: The transfer learning in NNLP. f (;α) is the shared
GNN-based backbone. д(; β) is the prediction head.

layers, Relu layers, and Dropout layers. While training, the mean
square error (MSE) function L = (yi −y′i )

2 is used to compute loss.

Multi-platform training. As our evolving database accumulates
latency from multiple platforms, we can investigate multi-platform
latency prediction. As shown in Figure 3, our NNLP realizes the
multi-platform latency prediction by the shared GNN-based en-
coder f (;α) andmulti-headsд(; βP1 ),д(; βP1 ), ...,д(; βPm ). Themulti-
platform training strategy is displayed in Algorithm 1. For each sam-
ple (Gi ,yi ,pi ), pi ∈ {P1, P2, ..., Pm } is the target platform. While
training, each iteration will update the parameters of both the
shared GNN-based encoder and the predictor head for platform pi .
The proposed multi-platform latency prediction method can not
only reduce predictor number for different platforms but also share
model structure knowledge among different platforms.

Transfer learning. Since our NNLP contains a GNN-based back-
bone that can be shared, it is convenient to perform transfer learning
for unseen structures and unseen platforms. The transfer learning
in NNLP is shown as Figure 5. For transfer learning on an unseen
structure typeMx , we first load pre-trained parameters for f (;α)
and д(; β), and then fine-tune parameters α ′, β ′ with a new sam-
ple set {(Gi ,yi ,pi )|Gi is the model type Mx }. For transfer learning
on an unseen platform Px , we first load the pre-trained parame-
ters of the multi-platform predictor for f (;α), and then fine-tune
parameters α ′, βPx ′ with a new sample set {(Gi ,yi ,pi )|pi = Px }.
Compared with learning from scratch, transfer learning enables
training with fewer new samples and saving the training cost.

7 UNIFIED INVOKING INTERFACE
We implement NNLQP based on NetworkX [10], Flask [9], and
Pytorch [27]. We adopt NetworkX to extract node attributes and
topology information of DNN models, employ Flask to implement
serving logic, and use Pytorch to construct our latency predictor.
The NNLQP consists of 10,573 lines of Python code with 8,334 lines
for NNLQ and 2,239 lines for NNLP. NNLQP provides users with a
unified latency query and prediction interface as follows:
import NNLQP
params = {

" model_path " : " model . onnx " ,
" b a t c h _ s i z e " : 1 ,
" p la t form_name " : " cpu−openppl− f p32 " ,

}
t r u e _ l a t e n c y = NNLQP . query ( ∗ ∗ params )
p r e d _ l a t e n c y = NNLQP . p r e d i c t ( ∗ ∗ params )

where params include the ONNX path, batch size, and platform
name. Users can query the real latency by invoking the interface
NNLQP .query and predict multi-plaform latency by invoking the
interface NNLQP .predict .

8 EXPERIMENTS
8.1 Experimental Setup

Dataset. We construct a latency dataset to evaluate the perfor-
mance of latency prediction methods. The constructing approach
is similar to nn-Meter. We select 9 state-of-the-art DNN models,
AlexNet [18], VGG [36], GoogleNet [37], ResNet [12], SqueezeNet [14],
MobileNetV2 [33], EfficientNet [39],MobileNetV3 [13],MnasNet [38]
and then transform each one to get 2,000 variants with various
kernel sizes and output channels. 2,000 models with the highest
accuracy in NASBench201 are also added to our dataset. Therefore,
the collected dataset contains 20,000 ONNXmodels, of which 18,000
models share 9 kinds of topology structures, another 2,000 models
have different topologies. We then use NNLQ to perform automatic
multi-platform latency measurement. NNLQ runs each model 50
times on the target platform and takes the average result as the
latency ground truth.

Setup. The proposed unified graph embedding model and latency
predictor are implemented using Pytorch. During training, the
Adam [17] method is used to optimize parameters, the learning
rate is set to 0.001. The batch size is 16 and the average loss of the
batch samples is adopted as the basis for backward propagation.
Our predictors are trained on a machine with a GTX1660 GPU.

Metrics. To evaluate deviations between latency predictions and
ground truths, we use Mean Absolute Percentage Error (MAPE) and
Error Bound Accuracy (Acc(δ )). MAPE denotes the mean absolute
percentage deviation and the lower is better. Acc(δ ) denotes the
percentage of samples whose predictions and ground truths are
within an error bound δ and the higher is better. (see Appendix C)

8.2 System Efficiency
We first analyze the cost of obtaining the model latency through
different methods in NNLQP: query true latency by NNLQ and pre-
dict latency by NNLP. The NNLQ can cache history latency results,
and it returns the hitting record directly. Only queries without hit
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Table 2: The comparison of the time cost of querying model latency and predicting model latency. The test is based on 100
models and 9 platforms. Hit-a% means that a% of queries already stored in the database, and the remaining 1 − a% of queries
need to be measured on actual hardware. We also compare the cost of our NNLP and the prior predictor FLOPs+MAC.

Platform Cost of Query or Predict Latency(s) Speedup Relative to Query-Hit-0%
Hit-0% Hit-50% Hit-100% FLOPs+MAC NNLP Hit-50% Hit-100% FLOPs+MAC NNLP

cpu-ppl2-fp32 15734.8 8788.37 219.54 10.35 11.04 1.79 71.67 1520.09 1425.36
hi3559A-nnie11-int8 9212.54 5359.11 197.55 10.55 11.2 1.72 46.63 873.19 822.7
gpu-T4-trt7.1-fp32 8490.74 4666.53 197.23 7.73 8.06 1.82 43.05 1098.93 1053.33
gpu-T4-trt7.1-int8 8111.45 4248.67 207.75 8.27 8.61 1.91 39.04 980.81 942.24
gpu-P4-trt7.1-fp32 9007.61 4853.23 171.04 8.73 9.21 1.86 52.66 1032.21 978.4
gpu-P4-trt7.1-int8 9077.02 5126.96 232.67 8.94 9.73 1.77 39.01 1015.87 933.27
hi3519A-nnie12-int8 8991.36 5432.36 196.54 9.29 10.2 1.66 45.75 968.26 881.37
atlas300-acl-fp16 11819.63 6333.05 151.47 10.77 11.34 1.87 78.03 1097.64 1042.39
mul270-neuware-int8 11116.97 5636.52 162.42 9.85 10.77 1.97 68.44 1128.86 1031.79
Average 10173.57 5604.98 192.91 9.38 10.02 1.82 52.74 1084.06 1015.62

will invoke the latency measurement on the hardware device. We
choose 100 DNN models from 10 families and obtain their latencies
on 9 platforms. We randomly select 0%/50%/100% to evaluate the
query efficiency of different hit ratio. So the sizes of models are
relatively uniform and will not have biased distribution.

The total time cost of different methods is shown in Table 2.
It reveals that: (1) The database cache mechanism in NNLQ can
effectively improve the efficiency of true latency acquisition. On
average, the speedup ratio of Hit-100% to Hit-0% is 52.74 times. We
analyze the actual hit ratio of the current systemwhich is about 53%,
so the overall speedup is about 1.8. Up to now, our NNLQ stores 63
platform records, 200k+ model records and 700k+ latency records.
The total database size is about 10GB; (2) The average speedup with
latency prediction in NNLP reaches 1015 times relative to Hit-0%;
(3) The latency prediction is faster than Hit-100% (10.02s vs 192.91s).
Because the query requires calculating the graph hashing using
CPU, accessing the remote database, and checking if the same record
existed in the database, while prediction can be conducted locally
with GPU. So the query is much slower; (4) The prediction cost of
NNLP is close to that of FLOPs+MAC (10.02s vs 9.38s). Compared
with the less complex method FLOPs+MAC, our NNLP contains
the GNN structure. The GNN is computed on Nvidia GPU and the
inference is efficient.

8.3 Comparison with Related Works
We use latencies of 20,000 models on the platform gpu-gtx1660-
trt7.1-fp32 as the dataset. To validate whether a method can predict
efficient results for unseen structures, samples inside train and test
contain different model types. For model-based methods FLOPs,
FLOPs+MAC, BRP-NAS [7], and our NNLP, the ONNX graph and its
latency are enough to training. However, for kernel-based methods
nn-Meter [41] and TPU [16], a kernel dataset is required. We split
20,000 graphs into 14 kinds of kernels based on fusion rules. The
statistics of the split kernels are shown in Appendix D. For each
kernel family, we randomly select 2,000 or 1,000 (only for the family
whose number is less than 2,000) kernels to obtain latency by NNLQ,
and then split them by the ratio of 7:3 for train and test, respectively.
The details of compared methods are shown in Appendix E.

The comparison of different latency prediction methods is shown
in Table 3. The NNLP achieved the best average prediction effect

with average MAPE 10.66%, which is 4.69% lower than that of the
second-best method nn-Meter. The average Acc(10%) of NNLP is
59.73%, which is 12.31% higher than that of nn-Meter. The FLOPs
method gets the worst performance. However, FLOPs+MAC gets
10.44% MAPE improvement relative to FLOPs. It shows that mem-
ory access is an important factor that determines model latency
for the current platform. Even though nn-Meter and TPU get the
best performance of some model families, such as MobileNetv2 and
MobileNetV3, NNLP performs better than nn-Meter and TPU over-
all. Why can not kernel-based methods realize satisfying results?
Because the relationship between model latency and the sum of
kernel latencies varies with the model type. Our NNLP uses the
unified graph embedding directly, avoiding the problem of unreli-
able additivity. BRP-NAS performs worse than NNLP, even though
it utilizes the same node features as NNLP. It shows that BRP-NAS
can not extract useful graph embedding of the entire model.

8.4 Ablation Analysis
To measure the impact of different components in our unified graph
embedding method, we conducted ablation analysis: (1) wo/F 0v : to
check the effect of node features, therefore only the static features
are used for latency prediction; (2) wo/gnn: to check the effect of
the GNNmodel, we remove the GNN and therefore the node feature
is directly used as the node embedding Fdv = F 0v , and then reduce
node embeddings into graph embeddings as Equation 5 to predict
latencies; (3) wo/F static

G
: to check the effect of graph static features,

we remove F static
G

and only use Fdv for latency prediction.
As illustrated in Table 4, MAPE of the model wo/F 0v is 31.61%,

which has a big performance drop. Compared with predictors in-
volved GNN-based node embeddings, the prediction performance
of wo/gnn is significantly decreased (MAPE increases from 10.66%
to 25.15%), which shows that GNN can extract effective latency-
related features. The model wo/F static

G
results in MAPE 23.59%.

It indicates that the global static features contribute much to la-
tency prediction. The prediction accuracy of wo/F 0v , wo/gnn, and
wo/F static

G
gradually increases. It shows that for the importance of

latency prediction, node features > GNN > static features. For all
model families, the whole NNLP achieves the best performance com-
pared with other methods, which further verifies that our designed
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Table 3: Comparison with related works such as nn-Meter [41], TPU [16], BRP-NAS [7] on 10 different model families. The
’Model Family = ResNet’ denotes that only ResNet [12] models are used for test and all the other models are used for train.

Metric Model Family FLOPs FLOPs+MAC nn-Meter TPU BRP-NAS NNLP

MAPE ↓

ResNet 21.18% 18.91% 15.58% 20.05% 15.84% 6.75%
VGG 69.34% 66.63% 19.47% 38.73% 30.95% 7.79%
EfficientNet 58.36% 53.96% 18.93% 16.74% 51.97% 21.33%
MobileNetV2 37.42% 35.27% 6.43% 12.68% 20.42% 6.93%
MobileNetV3 64.64% 57.13% 35.27% 9.97% 58.13% 16.57%
MnasNet 40.31% 35.96% 10.69% 11.61% 17.26% 9.45%
AlexNet 44.65% 15.45% 7.20% 10.55% 31.68% 9.74%
SqueezeNet 29.89% 23.19% 18.69% 24.60% 42.55% 8.45%
GoogleNet 30.76% 32.54% 11.71% 8.10% 25.48% 10.83%
NasBench201 80.41% 33.52% 9.57% 58.94% 13.28% 8.76%
Average 47.70% 37.26% 15.35% 21.20% 30.76% 10.66%

Acc(10%) ↑

ResNet 26.50% 29.80% 39.45% 27.30% 39.80% 78.25%
VGG 4.80% 2.10% 26.50% 2.60% 13.20% 70.45%
EfficientNet 0.05% 0.05% 23.40% 17.00% 0.10% 24.65%
MobileNetV2 6.90% 8.05% 80.75% 33.95% 29.05% 76.00%
MobileNetV3 0.05% 0.05% 23.45% 64.25% 13.85% 35.55%
MnasNet 6.20% 9.80% 60.95% 44.65% 34.30% 63.10%
AlexNet 6.55% 40.50% 75.45% 57.10% 15.20% 62.35%
SqueezeNet 16.10% 21.35% 36.20% 25.65% 11.85% 65.90%
GoogleNet 12.75% 9.80% 47.40% 69.00% 12.55% 50.05%
NasBench201 0.00% 10.55% 60.65% 2.50% 43.45% 67.10%
Average 7.99% 13.20% 47.42% 34.40% 21.34% 59.73%

Table 4: Ablation study with different graph embedding
methods. The metric is MAPE↓.

Model Family NNLP wo/F 0
v wo/gnn wo/F stat ic

G

ResNet 6.75% 16.21% 18.62% 11.98%
VGG 7.79% 64.24% 30.23% 33.50%
EfficientNet 21.33% 36.28% 22.34% 46.10%
MobileNetV2 6.93% 20.57% 24.42% 12.72%
MobileNetV3 16.57% 54.92% 28.59% 18.76%
MnasNet 9.45% 22.58% 28.18% 20.67%
AlexNet 9.74% 50.40% 15.99% 30.46%
SqueezeNet 8.45% 16.62% 23.20% 14.21%
GoogleNet 10.83% 20.76% 18.13% 29.36%
NasBench201 8.76% 13.54% 41.76% 18.12%
Average 10.66% 31.61% 25.15% 23.59%

graph embedding benefits from F 0v , GNN , F static
G

, and shows great
advantages in latency prediction.

8.5 Method Universality
Can NNLP predict the latency of the kernel? The proposed
NNLP takes ONNX as input, so it can be applied to different levels of
neural networks, such as ops, sub-graphs and whole networks. We
also perform the kernel latency prediction by NNLP and compare
results with nn-Meter and TPU which predict latency based on
kernels as shown in Table 5. From the table, our NNLP can predict
latency results for kernels, with slightly better performance 7.67%
than nn-Meter 8.33% and TPU 8.01% in terms of MAPE. NNLP can
extract efficient latency-related features for kernels containing few
nodes.

Table 5: Comparison of different kernel latency prediction
methods. The MAPE↓metric is presented.

Kernel Family nn-Meter TPU NNLP
AveargePool 4.89% 7.39% 6.94%
Concat 5.01% 3.22% 2.64%
Conv+Add+Relu 5.09% 4.99% 4.93%
Conv+Add 5.24% 4.36% 4.86%
Conv+Clip 7.21% 7.98% 6.37%
Conv+Relu 11.35% 9.34% 10.73%
Conv 18.55% 11.84% 13.25%
Flatten 15.13% 13.56% 12.54%
Gemm 5.06% 7.63% 6.99%
GlobalAveragePool 4.94% 6.79% 6.01%
MaxPool 2.46% 5.71% 4.69%
ReduceMean 7.91% 7.37% 7.53%
Relu 17.44% 14.79% 13.97%
Sigmoid+Mul 6.29% 7.17% 5.96%
Average 8.33% 8.01% 7.67%

CanNNLPpredict themodel latency ofmultiple platforms
simultaneously?Our NNLPmethod supports multi-platform joint
training. It shares the unified graph embedding and adopts multi-
heads to predict latency for multiple platforms simultaneously. To
validate the effectiveness of multi-platform prediction, we com-
pare the performance of multi-models and a single-model with
multi-heads. We use head in our predictor to denote the task spe-
cific part. One head predicts the latency of one hardware. In the
experiment, we selected 9 hardware platforms for test. For each
platform, we query latencies of 2,000 models from the database, and
samples are divided into train and test by the ratio 7 : 3. As Table 6,
the average performance of multi-models and single is close: The
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Table 6: Comparison of multi-platform latency prediction
by the multi-models and single-model with multi-heads.
The metric is Acc(10%)↑.

Platforms Multi-models Single-model
cpu-openppl-fp32 89.92% 90.18%
hi3559A-nnie11-int8 96.08% 94.58%
gpu-T4-trt7.1-fp32 84.64% 86.67%
gpu-T4-trt7.1-int8 76.82% 69.96%
gpu-P4-trt7.1-fp32 83.14% 82.45%
gpu-P4-trt7.1-int8 80.12% 76.76%
hi3519A-nnie12-int8 93.99% 93.35%
atlas300-acl-fp16 70.51% 71.47%
mul270-neuware-int8 50.18% 50.18%
Average 80.60% 79.51%

Acc(10%) is 80.60% vs 79.51%. The latency prediction accuracy of
each platform is also close. Besides, we compare the prediction cost
of multi-models and single-model. While predicting the latency of
100 models on 9 platforms, the multi-models costs 93.41 seconds
in total, and the single-model costs only 10.59 seconds. Compared
with the multi-models, the single-model saves about 9 times of
prediction cost. It shows that our NNLP can reduce the predictor
quantity for multi-platform latency prediction, shorten the training
cycle, and achieve performance the same as multi models. It also
indicates that NNLP can extract platform-independent latency fea-
tures of DNN models, which can better guide multi-platform joint
training.

8.6 Transfer Learning with Pre-trained Model
Transfer learning for unseen structures. NNLP is a model-level
latency prediction method, and test models are totally unseen while
training. In some scenarios, with the help of few samples contain-
ing unseen model types, we expect that predictors can get better
performance. With the pre-trained model, NNLP can transfer the
model knowledge to an unseen type and achieve better results.
When the test model family is ResNet, we train the pre-trained
model with 18,000 models containing all other 9 families. Then
we apply the pre-trained model to initialize weights and use extra
ResNet samples for NNLP fine-tuning. We compare the prediction
results of transfer learning with pre-trained model and general
learning that trains from scratch. Figure 6 shows the comparison of
5 model families. For all model families, all curves trend upwards.
As the training samples increases, the prediction accuracy of NNLP
continues to improve. Orange curves are above the blue one. It
indicates that for different amounts of training samples, transfer
learning always achieves better performance. Latency knowledge
learned by NNLP can be well transferred to unseen models. The
pre-trained model can help NNLP improve the upper limit of predic-
tion accuracy. Besides, the fewer training samples, transfer learning
can achieve greater improvement. For ResNet, when the number
of training samples is 32, the accuracy improvement is 30.8%, but
when the number is 1,000, the improvement is 1.7%. It shows that
transfer learning is more useful with the support of few training
samples of unseen structures. For comparison, we also performed
transfer experiments with the prior method FLOPs+MAC, please
see Appendix F for details.

Transfer learning for unseen platforms. NNLP can also be
applied to transfer learning for unseen platforms. The experiment
is based on 9 platforms. For the target platform, we train the multi-
heads pre-trained model based on the other 8 platforms. Then we
use a certain number of target platform samples to fine-tune the
predictor. We compare the prediction results of the model that is
applied pre-trained model or not. Figure 7(a)-(d) display results of 4
platforms. The improvement brought by pre-trained model is differ-
ent for different platforms. For hi3519A-nnie12-int8, a small count
of samples can get better improvement. For cpu-openppl-fp32 and
atlas300-acl-fp16, moderate samples achieve better improvement.
For gpu-T4-trt7.1-fp32, all numbers of samples bring obvious im-
provement. Figure 7(e) displays the average Acc(10%) on 9 platforms.
Orange curves are above the blue one. It indicates that NNLP can
transfer the model latency knowledge learned from other platforms
to a new platform, and increase its accuracy limit.

Transfer learning for different task models. We intend to
explore how the pre-trained latency predictor of classification mod-
els contributes to the latency predictor of detection models. Detec-
tion models such as RetinaNet [24] usually employ the classification
model ResNet34 [12] as the backbone. However, the latency differ-
ence between detection and classification models is huge due to the
difference of task specific part. As shown in Figure 8, NNLP can well
transfer the latency knowledge learned from the classification task
to the detection task. With our powerful pre-trained embedding,
the data required to achieve satisfactory accuracy reduces from
1,000 to 50, contributing to a 20 × superior data efficiency, which
makes the fast transfer with few samples possible.

8.7 Further Verification on NAS Tasks
With relatively low time cost, we have a much higher possibility
for finding models which meets the latency requirements in NAS
tasks. Given the latency requirement of the model (e.g., 5ms), the
improvement of the predictor accuracy can increase the probability
of finding amodel that meets the latency requirements. For example,
with the accurate latency feedback, we are only able to test 1k
models, but with the latency predictor, we can get the latency of
10k models. With the help of an accurate latency predictor, we
guarantee that the prediction error is less than 10% for 95% of
models. Therefore, we can get more models that meet the latency
requirements, which will lead to an increased probability of finding
a higher-precision model. With the help of an accurate latency
predictor and accurate accuracy predictor, we are able to findmodels
with higher task accuracy.

As shown in Figure 9, the pareto front chosen from 1,000 models
which are sampled from OFA supernet [2] with different metric.
As the latency range is relatively large, the Kendall Tau correla-
tion coefficient between true latency and other three indicators
FLOPs, Lookup Table and Predict is 0.87, 0.91 and 0.92. With given
computation budget around 300M, it turns into 0.38, 0.53 and 0.73
respectively. Therefore, for models with a large latency range, only
FLOPs pareto is far from the true latency pareto front. However,
with a small latency range, the Lookup table method fails to find
optimal pareto front models. With the same latency, the accuracy
gain of the pareto front models from our accurate predictor is 1.2%
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(a) ResNet (b) MobileNetV2 (c) MobileNetv3 (d) MnasNet (e) SqueezeNet

Figure 6: The experiment of transfer learning on unseen structures. We compare the prediction accuracy of NNLP with and
without pre-trained model. The number of training samples is set to 32, 100, 200, 300, and etc. The training time costs corre-
sponding to 32/100/200/300 samples are 59/97/150/195 seconds respectively.

(a) cpu-openppl-fp32 (b) gpu-T4-trt7.1-fp32 (c) hi3519A-nnie12-int8 (d) atlas300-acl-fp16 (e) Average

Figure 7: The experiment of transfer learning on unseen platforms. We compare the prediction accuracy of NNLP with and
without pre-trained models. The number of training samples is set to 32, 100, 200, 300, and etc.
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Figure 8: Transfer learning results from classification mod-
els to detectionmodels. The test MAPE for 1,000 samples, 50
samples, 50 samples with pre-trained model is 0.038, 0.044,
0.040.

compared with FLOPs pareto and 0.6% compared with Lookup table
pareto.

9 HOW DOES NNLQP HELP MODEL DESIGN?
The true and accurate latency feedback is essential for model design
and deployment. Therefore, the developer can use our system to
help with deep neural network design by alleviating the cost of
NN latency query and prediction in following cases: (1) For mod-
els intend to be deployed on multiple platforms, NNLQ improves
deployment efficiency to obtain true latency feedback. (2) With
the true latency feedback, we can get a high-level decision in the
initial stage of model design. (3) When the model design cannot
meet the requirements, the intervention of NAS is required, so that

(a) 250-550M (b) 300M(±5%)

Figure 9: Comparison of different pareto front models from
1,000 models in the FLOPs (or lookup table latency, pre-
dicted latency, true latency)-Accuracy curve.

the prediction function of NNLP can help with finding models with
higher task accuracy. (4) If different models or tasks are required,
the evolving latency database can further improve the efficiency of
latency prediction.

NNLQ can free researchers from the tedious process of
collecting the latency of DNN models from various hard-
ware devices: In practice, researchers intend to deploy models
on multiple devices such as Apple and Samsung and so on. These
mobile phones also have different chips, such as Apple A, Qual-
comm Snapdragon, MTK. Even for Qualcomm chips, there are four
different types ARM/GPU/DSP/NPU. To get the accurate latency
feedback, we need to deploy models on different platforms adapting
to different hardware. For example, we can use TensorRT to get



NNLQP: A Multi-Platform Neural Network LatencyQuery and Prediction System with An Evolving Database ICPP ’22, August 29-September 1, 2022, Bordeaux, France

Table 7: The total test models, time cost and speedup for different methods with latency measurement only or latency predic-
tion with or without transfer.(k=1,000, m=1,000,000, T=once prediction cost, 1000T=once true latency test cost)

measurement prediction test models time cost speedup
latency measurement 1k 0 1k (1m + 0) × T 1×
latency prediction without transfer 1k 10k 10k (1m+10k) × T 0.99×
latency prediction with transfer 50 10k 10k (50k+10k) × T 16.7×

the latency feedback on NVIDIA GPU, while we cannot use Ten-
sorRT to transform model into hardware format for other hardware
devices. Most hardware has different deploying format. Therefore,
the proposed model latency query system NNLQ can perform au-
tomatic model deployment and latency measurement on multiple
platforms. We use ONNX as a unified representation and integrated
different toolkits from different vendors into one framework. So
the deployment can be hardware-agonistic and free the users from
deployment details. ONNX model and target platform are provided
as query input, and NNLQ returns the true model latency on the
target hardware through the three steps: model transformation,
device acquisition and latency measurement.

Ourneural network latency query systemcanprovide some
high-level decision in the model design:

• Which operators are not suitable: for example, hard swish is
not supported on openppl and therefore should be avoided.

• On the choice of backbone to achieve better latency-accuracy
trade-off: For example, RegNetX-200M [30] and ResNet18 [12]
have similar ImageNet accuracy which is 68.7 and 70.3, but
the latency of RegNetX-200M is 150% of ResNet18 on P4
int8. Therefore, we should choose ResNet18 compared with
RegNetX-200M.

• In the choice of hardware for inference speedup: Given the
same model-ResNet18 + data type int8 + batch size 1, the
latency on P4 is 2 times of the latency on T4. If these two
devices are available, changing deployed device from P4 to
T4 can bring 50% speedup. Besides, atlas300 is faster than
mlu270 under the same setting.

• In the choice of data type for possible accuracy degradation:
for the vision transformer models, the speed up brought by
int8 compared with FP32 is less than 5%. To avoid the poten-
tial accuracy degradation, you can choose FP32 directly.

In the network architecture search process, our neural
network latency prediction system can reduce search cost
andfindmodelswithhigher task accuracy. If the currentmodel
is not able to be deployed on some required hardware, we need to
redesign a model which is general across different platforms. In
hardware-aware NAS, models are selected with the help of hard-
ware feedback, therefore, if the hardware feedback takes a long
time to be acquired, this could increase the search cost and hinder
the use of hardware-aware NAS. NAS needs to test a large number
of models, and true latency measurement is very slow. Our latency
prediction is able to predict accurate model latency with 1,000 times
improved efficiency as shown in Table 2.

Developers can further use the data from our evolving
database to reduce the cost of latency predictor training. Since
the prediction process brings a possible gap in the true latency and

predicted latency, improving the performance of the latency predic-
tion allows us to simulate the true latency feedback as accurately
as possible. The comparison of time cost is listed in the Table ??. If
the training cost of the predictor is high, we may not achieve the
purpose of improving efficiency, but if we use historical information
with our evolving database, we can get the highly accurate latency
predictor with less cost, while getting more model latency.

10 CONCLUSION
In this work, we investigate latency acquiring problems for two
aspects: latency query and latency prediction. For latency query,
we design a unified interface to measure latency on diverse plat-
forms, and construct an evolving database to store models and
their latencies. For latency prediction, benefiting from the large-
scale latency knowledge, we design a unified graph embedding
that can efficiently transfer for new network structures and plat-
forms. Equipped with our NNLQP system, the efficiency of latency
acquisition has been improved obviously.
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A KERNEL ADDTIVITY VALIDATION
To validate whether the additivity assumption is reliable, we con-
ducted latency tests on a GPU platform. We test 60 DNN models
containing 6 types: ResNet, AlexNet, NasBench201, EfficientNet,
MobileNetV2, and MobileNetV3. The target latency platform is the
GTX1660 GPU hardware and the TensorRT software. We collect
the operator fusion rules and split each model into fine-grained
kernels. Then we query both model and kernel latencies by NNLQ.
We compare the model latency and the sum of its kernel latencies,
and the scatter plot is shown as Figure 2.

In Figure 2, the x-axis denotes the latency of the neural network,
the y-axis denotes the sum of latencies of kernels contained in the
model, the red line denotes function y = x , and the points with dif-
ferent colors mark the models with different model types. From the
figure, we can see: (1) The points of different colors are all above the
line y = x . It indicates that on this hardware, the sum of the kernel
latencies is greater than model latency for all tested graph struc-
tures. The phenomenon shows that the additivity assumption is not
reliable for the GXT1660 GPU + TensorRT platform. The latency
overlap between neighborhood kernels may cause unreliability; (2)
For points with the same color, the relationship between model
latency and the sum of kernel latencies is linear approximately. The
greater the model latency, the greater the sum of related kernel la-
tencies. However, different model types show different linear slopes,
and the relationship between the model latency and the sum of ker-
nel latencies will vary as the network structure changes. Therefore,
the additivity assumption of the specific platform is unreliable, and
for various model types, it is difficult to correct the sum of kernel
latencies to the model latency.

B DETAILS OF TARGET PLATFORMS
The experiments in this work involve the following platforms: (1)
cpu-openppl-fp32: Intel CPU Xeon Gold 6246 with openppl 1 infer-
ence library; (2) hi3559A-nnie11-int8/hi3519A-nnie12-int8: Hi3559A
or Hi3519 board with hisvp nnie library; (3) gpu-T4-trt7.1-int8/gpu-
T4-trt7.1-fp32/gpu-P4-trt7.1-int8/gpu-P4-trt7.1-fp32: Nvidia GPU
T4 or P4with TensorRT7.1 library. TensorRT2 is a high-performance
inference library developed by NVIDIA; (4) atlas300-acl-fp16: At-
las300 with acl ascend310 3 library. The acl is a neural network
inference software developed by HUAWEI for the hardware named
Atlas; (5) mul270-neuware-int8: MUL270 with neuware 4 library,
which is developed by Cambricon. The fp32, fp16, and int8 denote
the data type of tensor operation when running the DNN model. (6)
rv1109-rknn-int16/int8: rv1109 is an ASIC hardware of Rockchip.
Its runtime library is rknn 5.

C METRICS
MAPE is a non-negative number and the smaller value represents
the better prediction. The MAPE is defined as:

MAPE =
1
n

n∑
i=1

|yi − y′i |

yi
× 100% (6)

1https://github.com/openppl-public/ppl.nn
2https://github.com/NVIDIA/TensorRT
3https://support.huawei.com/enterprise/zh/doc/EDOC1100206822/12030271
4https://developer.cambricon.com/index/document/details/classid/3/cid/1/id/41.html
5https://github.com/rockchip-linux/rknn-toolkit

Table 8: The statistics of kernels split from 20,000 models.

Kernel Family Number Percentage
AveragePool 1164 0.32%
Concat 32617 8.91%
Conv+Add+Relu 15672 4.28%
Conv+Add 15497 4.23%
Conv+Clip 7340 2.01%
Conv+Relu 219123 59.88%
Conv 38013 10.39%
Flatten 3318 0.91%
Gemm 12498 3.42%
GlobalAveragePool 4526 1.24%
MaxPool 8887 2.43%
ReduceMean 1290 0.35%
Relu 4605 1.26%
Sigmoid+Mul 1406 0.38%
All 365956 100.00%

Acc(δ ) is between 0% and 100%, and the larger value reflects the
better prediction. The Acc(δ ) is defined as:

Acc(δ ) =
1
n

n∑
i=1

pos(δ −
|yi − y′i |

yi
) × 100% (7)

where pos(z) is 1 when z ≤ 0, and 0 otherwise.

D THE STATISTICS OF SPLIT KERNELS
Table 8 displays the statistics of kernels that are split from 20,000
models. There are 365,956 kernels in total. On average, eachmodel is
split into about 18 kernels based on our fusion rules. The Conv+Relu
family has the most kernels, accounting for 59.88% of the total. It
shows that for DNN models, the pattern Conv+Relu is one of the
most widely used structures.

E IMPLEMENTATION DETAILS IN
COMPARIONWITH RELATEDWORKS

We compared our prediction method with related works: (1) FLOP-
s/FLOPs+MAC:we directly use the FLOPs feature or FLOPs+MAC
features to predict latency by linear regression method; (2) nn-
Meter: we first adopt the random forest regression to predict the
latency of all kinds of kernels, and then sum kernel latencies as the
model latency. The extracted kernel feature and regression mod-
els are defined the same as the nn-Meter official project6. Due to
the unreliability of the additivity assumption, we apply the linear
regression method to correct the summation result; (3) TPU:We
first use GraphSAGE to predict the latency of kernels. The same
as nn-Meter, we correct the sum of kernel latencies by the linear
regression method, and obtain the model latency; (4) BRP-NAS:
The original BRP-NAS is only proper to the model composed of
specific blocks. It can not be applied to our latency dataset directly.
We take the node features and network topology defined in NNLP
as inputs. We use the official GNN backbone of BRP-NAS7 to predict
latency.

6https://github.com/microsoft/nn-Meter
7https://github.com/SamsungLabs/eagle
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(a) ResNet (b) MobileNetV2 (c) MobileNetV3 (d) MnasNet (e) SqueezeNet

Figure 10: The experiment of transfer learning on unseen structures for the FLOPs+MAC.

F TRANSFER LEARNING FOR FLOPS+MAC
For comparison, we also performed transfer learning with the prior
method FLOPs+MAC. The experiment setup is the same as NNLP.
The transfer learning results on unseen structures are shown as
Figure 10. Orange curves and the blue ones are almost overlapped,
which shows that the transfer learning of FLOPs+MAC can not
bring improvement for latency prediction compared with learning
from scratch. In addition, regardless of the number of training sam-
ples, the prediction accuracy of the FLOPs+MAC is always poor
(Acc(10%)<50%). The FLOPs+MAC model contains only one linear
layer, which does not has a backbone that can be shared. So we can
not predict latency on multiple platforms simultaneously. There-
fore, we can not conduct transfer learning on unseen platforms for
FLOPs+MAC either.
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